भौतिक विज्ञान-अन्तिम वर्ष क्वांटम यान्त्रिकी का उद्भव-आणिक पारमाणिकक और नाभिकीय भौतिकी

(प्रथम प्रश्न-पत्र)
इकाई 1(a) : सापेक्षता
प्रस्तावना, निर्देश फ्रेम, गैलीलियन रूपान्तरण समीकरणें, सापेक्षता एवं ईथर, माइकलसन-मोर्ले प्रयोग, लारेंज रूपान्तरण समीकरणें, लम्बाई में संकुचन, समकालिकता की सापेक्षता, वेग के साथ द्रव्यमान का परिवर्तन, द्रव्यमान एवं ऊर्जा की तुल्यता, संवेग और ऊर्जा के लिए रूपान्तरण समीकरणें

इकाई 1(b) : क्वांटम भौतिकी
चिरसम्मत सिद्धान्त की सीमाएँ और क्वांटम सिद्धान्त की उत्पत्ति, कृष्ण पिण्ड वर्णक्रम, प्रकाश-वैद्युत प्रभाव तथा आइन्स्टीन द्वारा इसकी व्याख्या, तरंग कण द्वैतता, द्रव्य तरंग लम्बाई के लिए व्यंजक, बोहर का पूरकता सिद्धान्त, कला वेग तथा समूह वेग की अवधारणा, समूह वेग तथा कला वेग में सम्बंध, डी. ब्रॉगली तरंगदैर्ध्य का मापन, न्यूट्रॉन विवर्तन, अनिश्चितता सिद्धान्त, हाइजेनवर्ग का गामा किरण सूक्ष्मदर्शी, एक बंद बॉक्स में कण

इकाई 2 : क्वांटम यांतिकी
श्रोडिंजर तरंग समीकरण, त्रिविमीय कालश्रित समीकरण, काल अनाश्रित श्रोडिंजर समीकरण, एक विमीय तरंग समीकरण, क्वांटम यांत्रिकी की अभिधारणाएँ, प्रायिकता घनत्व, मुक्त कण के लिए श्रोडिंजर समीकरण, सरल आवर्ती दोलित्र, विभव सीढ़ी पर तरंगों का परावर्तन तथा पारगमन, परावर्तकता तथा परागम्यता, कक्षीय कोणीय संवेग, कोणीय संवेग का क्वान्टीकरण, गोलीय प्रसंवादी विश्लेषण, हाइट्रोजन परणामणु के ऊर्जा स्तर, $n=1$ तथा $n=2$ के तरंगफलनों की आकृतियाँ

इकाई 3 : स्पेक्ट्रम
स्पेक्ट्रम, हाइड्रोजन परमाणु का बोहर मॉडल, हाइड्रोजन परमाणु की n वीं कक्षा की ऊर्जा, परमाणवीय हाइड्रोजन की स्पेक्ट्रमी श्रेणियाँ, ड्यूट्रॉन स्पेक्ट्रा, उत्सर्जन स्पेक्ट्रम, ऐल्कली श्रेणियों के लिए नियम, द्विक सूक्ष्म संरचना, क्वांटम संख्याओं की संकल्पना तथा उनका भौतिक महत्व, पाउली अपवर्जन सिद्धान्त, L-S युग्मन, आणविक स्पेक्ट्रा, अणुओं की इलेक्ट्रॉनिक ऊर्जाओं का विविक्त सैट, कम्पन्न की आवृत्ति, बल नियतांक का निर्धारण, घूर्णी ऊर्जा का क्वांटीकरण, अन्तरनाभिकीय दूरी का निर्धारण, घूर्णन कम्पन्न स्पेक्ट्रा, शुद्ध काम्पनिक स्पेक्ट्रम के लिए संक्रमण नियम

इकाई 4 : नाभिकीय अभिक्रियाएँ

प्रस्तावना, नाभिक के सामान्य गुण, परमाणु क्रमांक एवं परमाणु भार, नाभिक का वैद्युत चर्तुध्रुव आघूर्ण, नाभिकीय चक्रण एवं चुम्बकीय आघूर्ण, आधारभूत अंतः क्रियाएँ, युकावा का मेसांन सिद्धान्त, नाभिक का द्रव बूँद मॉडल, नाभिकीय शैल मॉडल, रेडियोऐक्टिव विघटन के नियम, α, β व γ का क्षय, नाभिकीय क्रिया, नाभिकीय क्रियाओं का Q -मान, नाभिकीय विखण्डन, नाभिकीय रिएक्टर, नाभिकीय संलयन, त्वरक तथा संसूचक, सिंक्रोट्रोंन, गाइगर मूलर गणित्र, न्यूट्रॉन संसूचन

ठोस अवस्था भौतिकी और इलेक्ट्रॉनिकी
 (द्वितीय प्रश्न-पत्र)

इकाई 1: अक्रिस्टलीय और क्रिस्टलीय ठोस
अक्रिस्टलीय और क्रिस्टलीय ठोस, सममिति प्रक्रियायें, क्रिस्टलों के सात निकाय, ब्रेवाइज त्रिविम जालक, जालक नियताँक का परिकलन, X-Ray की खोज, तीव्रता एवं गुण, समानान्तर या कोलिमेटिड, X -किरणों की तरंग दैर्ध्य का मापन, बन्धन बलों के आधार पर ठोसों के बन्धनों का वर्गीकरण, मैडेलुंग नियतांक की गणना, आयतनात्मक प्रत्यास्थता गुणांक एवं सम्पीड्यता, आइन्सटीन का विशिष्ट ऊष्मा सिद्धान्त, आइन्सटीन सिद्धान्त की सीमाएँ, बल नियतांक का व्यंजक ब्रिलियन क्षेत्र

इकाई 2: धातुओं का मुक्त इलेक्ट्रॉन सिद्धान्त तथा ठोसावस्था
धातुओं के लिय स्वतन्र्र इलेक्ट्रॉन गैस मॉडल, अवस्था घनत्व, ब्लॉक प्रमेय, आयन क्रोड के आवर्ती विभव में इलेक्ट्रॉन, धातुओं, अचालकों तथा अर्ष-चालकों के गुण, चुंबकीय पदार्थों का वर्गीकरण, अनुचुंबकत्व का लैंगविन का चिरसम्मत सिद्धान्त, लौह चुंबकत्व एवम् लौह चुंबकीय डोमेन सिद्धान्त, शैथिल्यता प्रभाव।

इकाई 3(a) : चालक तथा ट्रांजिस्टर
नैज अर्धचालक, चालक बैण्ड में इलेक्ट्रॉनों का सान्द्रण, आवेश वाहकों की निज सान्द्रता, अनुगमन धारा, विसरण धारा, धातु-अर्धचालक संधि, p-n सन्धि डायोड का परिपथ प्रतीक, अग्र अभिनत संधि, ऐवेलांश भंजन, सामर्थ्य क्षय, सुरंगन डायोड, प्रकाश-उत्सर्जक डायोड, ट्रांजिस्टर परिपथ, धारा प्रबर्धन गुणांक β कलेक्ट धारा, हाइब्रिड तुल्य परिपथ

इकाई 3(b) : प्रवर्धक
प्रवर्धन का सिद्धांत, प्रवर्धकों का वर्गीकरण, दिष्ट तथा प्रत्यावर्ती तुल्य परिपथ, प्रत्यावर्ती धारा तुल्य परिपथ, उभयनिष्ठ उत्सर्जक ट्रान्जिस्टर प्रवर्धक, λ प्राचलों द्वारा CE प्रवर्धक का गणितीय विश्लेषण, उभयनिष्ठ संग्राहक प्रवर्धक, α, β एवं γ में सम्बन्ध, आयाम विरूपण, दोलित्र, पुन: निविष्ट अंश
इकाई 4(a) : दिष्टकारी तथा फिल्टर
दिष्टकारी, अर्द्ध तरंग दिष्टकारी, पूर्ण तरंग दिष्टकारी, सेतु दिष्टकारी, फिल्टर, श्रेणी प्रेरकत्व फिल्टर, पार्श्व-पथ संधारित फिल्टर, L-अनुभाग फिल्टर, L- π अनुभाग फिल्टर, वोल्टता नियमन या स्थरीकरण, जेनर डायोड द्वारा वोल्टता स्थरीकरण

इकाई 4(b) : कम्प्यूटर संगठन
कम्प्यूटर संगठन, कम्प्यूटर संरचना तथा संगठन में अन्तर, स्ट्रकचर तथा फंक्शन, इन्स्ट्रक्शन कोड, इन्स्ट्रक्शन सैट, ऑपरेशन/ऑपरेशन-कोड तथा ऑपरैंड, कम्प्यूटर रजिस्टर, इंस्ट्रक्शन फॉर्मेट, मल्टी प्रोग्रामिंग, मल्टी टास्किंग, ' C ' प्रोग्रामिंग का परिचय, कैरैक्टर सेट अर्थात् ' C ' के वर्ण, ऐरे का अर्थ, घोषणा एवं निर्धारण, क्रम में व्यवस्थित करना (सॉर्टिंग), C Program to solve simultaneous equation

भौतिक विज्ञान भाग-3
 (प्रायोगिक)

1. विवर्तन ग्रेटिंग तथा हाइड्रोजन विसर्जन नलिका की सहायता से रिडवर्ग नियतांक (Rydberg's Constant) का मान ज्ञात करना।
2. थॉमसन विधि द्वारा इलेक्ट्रान का विशिष्ट आवेश (e/m) ज्ञात करना।
3. हॉल प्रभाव विधि द्वारा N -प्रकार के अर्द्धचालक में अनुगमन गतिशीलता ज्ञात करना।
4. एक स्टेजी R-Cयुग्मित प्रवर्धक की प्रवर्धन अभिलाकक्षणिकता का अध्ययन करना।
5. कैथोड किरण कम्पनदर्शी की सहायता से विद्युतपोषित स्वरित्र या प्रत्यावर्ती धारा स्त्रोत की तरंग आकृति का अध्ययन करना तथा लिस्साजू आकृतियों का विश्लेषण करके अज्ञात आवृति ज्ञात करना।
6. फोटोसेल के अभिलाक्षणिक का अध्ययन करना तथा प्लांक नियतांक का मान ज्ञात करना।
7. नियमित पावर सप्लाई का अध्ययन करना।
8. व सेक्शन फिल्टर का प्रयोग करके पावर सप्लाई का ऊर्मिका घटक व वोल्टेज नियमन ज्ञात करना।
9. पश्च संतृप्त धारा की ताप निर्भरता का उपयोग करके ऊर्जा बैण्ड अंतराल ज्ञात करना।
10. अनुनाद विधि द्वारा दिये गये पदार्थ का परावैद्युतांक तथा विद्युतशीलता ज्ञात करना।
11. मिलिकॉन की तेल बूंद विधि द्वारा इलेक्ट्रॉन के आवेश (e) का मान ज्ञात करना।
12. ट्रांसफार्मर के कोर की शैथिल्य हानि निकालना।
13. टनल डायोड के अभिलाक्षणिक वक्र का अध्ययन करना।
14. निर्वात वोल्टमीटर (VTVM) के अभिलाक्षणिकता का अध्ययन करना।
15. दिए गए ट्रांजिस्टर CE विधा (PNP) का में अध्ययन करके अभिलाक्षणिक वक्र व धारा लाभ ज्ञात करना।

कम्प्यूटर पर आधारित प्रयोग
16. सिम्पसन नियम का उपयोग करके फलन का समाकलन ज्ञात करना।
17. बीजगणितीय सकीमकरण को हल करने के लिए न्यूटन रेफसन विधि का उपयोग करना।
18. हनोई टावर का निर्माण करना।
19. स्ट्रिंग मेनुपुलेशन पर प्रोग्राम।
20. चार पूर्ण संस्था प्राप्त करना।

